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ABSTRACT

7
This study examines 11 probability distributions to determine which

distribution best describes demand during leadtime for 1H Cognizance Symbol

(Cog) material. Proper selection of the distribution is critical in the

accurate calculation of reorder levels. Actual leadtime demand observations

were calculated in the study. Histograms, a chi-square goodness-of-fit test

and a Mean Square Error (MSE) measure were used to analyze the leadtime demand

data.

Histograms of the data suggested the following distributions to describe

leadtime demand: Exponential, Gamma, Bernoulli-Exponential, Poisson, Negative

Binomial and Geometric. The chi-square goodness-of-fit test indicated that

none of these distributions fit the computed leadtime demand data across the

entire range of the distribution. However, a relative test of the right hand

tails of the distributions, which are most critical in determining reorder

levels, indicated that the Bernoulli-Exponential provided the best relative

fit for 1H Cog items.
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EXECUTIVE SUMMARY

1. Background. The reorder level calculation in the Uniform Inventory Control

Program (UICP) Levels computation (DOI) assumes that an item's actual leadtime

demand is described by either the Poisson, Negative Binomial, or Normal

distribution. The assumption of the most appropriate probability distribution

is critical in the accurate calculation of reorder levels. Previous attempts

to fit leadtime demand to theoretical probability distributions were restricted

by the existing data base to quarterly demand observations. A sufficient data

base now exists from which to compute actual leadtime demand observations. This

analysis examines the following theoretical probability distributions for

possible inclusion in the Levels computation of reorder level: Poisson, Normal,

Negative Binomial, Logistic, LaPlace, Gamma, Weibull, Geometric, Exponential,

Bernoulli-Exponential and Bernoulli-Lognormal.

2. Objective. To determine the probability distribution that best describes

the demand during leadtime for 1H Cognizance Symbol (Cog) material.

3. Approach. The Due-In Due-Out File (DDE) and the Transaction History File

(THF) were used to compute the leadtime for each item, and the demands that

occurred during that leadtime. These data were then used to produce histograms

of the leadtime demand for similar items based upon various grouping criteria.

The grouping criteria were MARK, Unit Price, Leadtime Demand, Value of Annual

Demand, Requisition Forecast, Leadtime and No Grouping. The histograms were

developed and a visual estimate of the distribution that best fit the data was

made. In addition to histograms the following statistics were computed: mean,

standard deviation, variance and median. These statistics were used to deter-

mine the maximum likelihood estimator parameters for the distributions under

consideration. The distribution(s) selected were subjected to goodness-of-fit
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tests to determine the accuracy of these distribution(s) to describe the

histograms under consideration. The goodness-of-fit tests used were the

chi-square test and a mean square error measure.

4. Findings. Six distributions were selected for chi-square goodness-of-fit

testing. These distributions were: Poisson, Exponential, Gammna, Negative

Binomial, Geometric and Bernoulli-Exponential. The chi-square test indicated

that none of the distributions fit the data based on the established

hypothesis. A mean square error measure was then used to determine the

distribution that most closely fit the data in the right hand tail since this

is the part of the distribution that is critical when setting the safety level.

The Bernoulli-Exponential distribution was selected as having the best relative

fit.

5. Recommendation. It is recommended that the Bernoulli-Exponential distri-

bution be adopted as the leadtime demand distribution for 1H Cog items.
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i. INTRODUCTION

The Navy Fleet Material Support Office (FMSO) was tasked by reference 1 of

APPENDIX A to determine the probability distribution that best describes the

demand during leadtime for 1H Cognizance Symbol (Cog) material. Currently,

the Uniform Inventory Control Program (UICP) Levels computation (DO1) assumes

the Poisson, Negative Binomial or Normal distribution describes an item's actual

leadtime demand. The assumption of the most appropriate probability distribu-

tion is critical in the accurate calculation of reorder levels. The reorder

level computation is based on forecasts of the quarterly demand and leadtime,

expressed in quarters, and includes a safety level to achieve the acceptable

degree of procurement stockout risk. If the probability distribution of an

item's leadtime demand is known, the safety level can be accurately determined

to achieve that degree of risk.

In the UICP system, items are assigned one of three probability distri-

butions based on their average leadtime demand. The Poisson distribution is

used to describe low demand items. The Negative Binomial distribution is used

for medium demand items and the Normal distribution is used for high demand items.

The criteria used to determine low, medium and high demand items are set by the

Inventory Control Points (ICPs). The selection of the most appropriate

probability distribution is vital to the calculation of safety level. If the

wrong probability distribution is chosen, it will not fit the demand pattern

and will result in an inefficient allocation of funds. For example, if too

much safety level is allowed, unnecessary costs will be incurred since too much

material is being bought. If too little safety level is allowed, the system

will be operating at a lower performance level since not enough material is



available. The ultimate goal is to have the best fit possible so that the

safety level determined will allow the system to perform at the desired level.

FIGURES I through III demonstrate the possible consequences of using the

wrong probability distribution to determine the reorder level. The three dis-

tributions that are currently in use in the UICP Levels setting program, Poisson,

Negative Binomial and Normal, are shown in these figures. The values on the

Y-axis are represented in scientific notation (i.e. IE-3 - 1*10 - - .001).
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In the examples above, for the Poisson distribution, the mean is 10, for

the Negative Binomial and Normal distributions, the mean is 10 and the variance

is 500. The risk (p) assigned to each distribution is .15. Using the same

mean and variance for each distribution, the Reorder Level (RL) calculated

varies widely depending on the distribution selected. The RL calculated using

the Poisson, Negative Binomial and Normal distributions are 13, 20 and 33, res-

pectively. Obviously, the selection of the Poisson distribution when the Normal

distribution should be used results in a RL which is 20 units less than what is

necessary for the desired protection against procurement stockout. Similarly,

if the Normal distribution is selected when the Negative Binomial distribution

should be used, unnecessary costs would be incurred because of the increased

RL investment.

The current distributions have been in use since the inventory system was

automated. References 2, 3 and 4 of APPENDIX A examined alternate distribu-

tions to describe leadtime demand. The distributions examined were compared to

the current distributions to determine if they described leadtime demand more

accurately. The conclusion reached in reference 2 of APPENDIX A was to continue

using the current distributions. Reference 3 of APPENDIX A, however,

recommended replacing the Normal distribution for high demand items with either

the Bernoulli-Lognormal or the Bernoulli-Exponential distribution. Reference

4 of APPENDIX A suggested the Gamma distribution which can assume various shapes

depending on the parameters selected. The current study, drawn from past

efforts, used historical data to compute actual leadtimes and to summarize the

demands which occurred during that leadtime. In the past, there was not a

sufficiently large data base from which to draw the information necessary to

compute a true leadtime and the subsequent demands that occurred during

4
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that leadtime. Previous studies relied upon a forecast of the leadtime

and a forecast of quarterly demand which, when multiplied together, resulted in

the calculation of demand during leadtime.

II. TECHNICAL APPROACH

A. COMPUTATION OF LEADTIME DEMAND. The computation of leadtime demand in

previous studies was hindered by the amount and type of data available.

Reference 2 of APPENDIX A used 12 quarters of historical stock point demand

data. Reference 3 of APPENDIX A used four years of historical daily demand

data which were grouped into thirty day "buckets" creating a demand time

series of 48 pseudo-monthly demands. Reference 4 of APPENDIX A used Air

Force monthly demand data. The demand data used in these three references were

insufficient to determine actual leadtime demand observations. The computation

of the leadtime for each item was not undertaken in any of the studies. For

example, reference 3 of APPENDIX A tried to fit a distribution to the entire

time series of demand data without regards to the leadtme and reference 2 of

APPENDIX A dealt with this problem by multiplying the forecast of quarterly

demand and the forecast of leadtime together in order to compute the leadtime

demand. This study determined actual leadtime demand observations based on

eight years of demand transactions and procurement initiations. Leadtime demand

was computed on an item by item basis using the actual demands and receipts as

found in Navy Ships Parts Control Center's (SPCC's) files.

A leadtime for a given National Item Identification Number (NIIN) was

computed by using the recommended procurement date (Data Element Number (DEN)

L002), located in the Due-In Due-Out File (DDF), as the first day of the

5
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leadtime. The last day of the leadtime was obtained from the transaction date

(DEN K005) of a receipt from procurement which is a transaction found in the

Transaction History File (THF). In order to ensure that the correct receipt

was used, the NIIN, Activity Sequence Code (ASC), and Procurement Instrument

Identification Number (PIIN) from the THF were compared with the NIIN, ASC, and

PIIN from the DDF; if they matched, the difference between the recommended

procurement date and the transaction date was the leadtime for that NIN

computed in days. When the recommended procurement date for a NIN was found,

the leadtime demand for that NIN was computed by summing the transaction

quantities for demand transactions which occurred on or after the recommended

procurement date but before the receipt transaction date. FIGURE IV

graphically depicts the process described above. (! represents a requisition

for one unit.)

DAY I DAY N
DEMANDS

RECOMMENDED RECEIPT FROM
PROCUREMENT PROCUREMENT

DATE DATE
(L002) (K005)

Leadtime Demand 8

FIGURE IV

If a receipt was not found for a NIIN, the leadtime could not be computed

and the observation was deleted. The possibility existed for a second leadtime

to begin, for the same NIIN, before the first leadtime had ended. When two

leadtimes ran concurrently for the same NIIN, they overlapped each other. An

6



overlapping leadtime or multiple buy outstanding occurred when a second procure-

ment initiation document had a recommended procurement date before the first

procurement initiation document was matched to a receipt transaction. The

occurrence of overlapping leadtimes during the leadtime demand computation

resulted in the demands which occurred during that interval being credited to -

all the overlapping leadtimes. That is, if a demand was found in an overlapping

leadtime, that demand was considered for each overlapping leadtime.

After each leadtime was computed, the length of the leadtime and the total

number of demands during that leadtime were recorded. For each NIIN, the mean

and standard deviation of leadtime in days and the mean and standard deviation

of total leadtime demand were computed.

The ideal inventory system would assign a distribution to each item based

on its leadtime demand. Even though there were eight years of data available,

the number of leadtime demands associated with each item were insufficient to

apply a distribution to each item. Therefore, the items were divided into

homogeneous groups based on certain characteristics, since a group of items

with similar characteristics should behave in a similar fashion. Using

similarly grouped items, a distribution would be hypothesized as fitting the

group rather than an individual item. Groups were determined based on one

of the following six criteria: MARK, Leadtime Demand Forecast (BO11A*B074),

Requisition Forecast (A023B), Unit Price (B053), Value of Annual Demand

(4*BO71A*B053) and Leadtime (BOllA). The MARK is based on quarterly demand

(B074), replacement price (B055) and value of quarterly demand (B074*B055).

Items are divided into one of five MARK categories. Low demand items (B074 C

.25) are classified as MARK 0. MARK for items which are not classified as MARK

0 are determined by the following matrix:

7



B074 S 5 B074 > 5

B055 > $50 or (B055*B074) > $75 MARK III MARK IV
B055 < $50 and (B055*B074) .: $75 MARK I MARK II

Since the MARK grouping has five categories, the remaining groups were also

divided into five categories for the initial evaluation. The breakpoints

within each group were selected so that approximately 20% of the total number

of leadtimes having certain characteristics would fall between the breakpoints.

For example, the breakpoints for Requisition Forecast are 0, .25, 1.0, 3.5 and

greater than 3.5; therefore, approximately 20% of the leadtimes have a

Requisition Forecast of 0, approximately 20% of the leadtimes have a Requi-

sition Forecast between 0 and .25 and so forth.

B. DATA VALIDATION. An important aspect of this study was the use of histori-

cal data to resolve some of the deficiencies that have been a major obstacle in

determining the demand which occurred during leadtime. The historical data

were derived from two SPCC files, the THF and the DDF. The THF contained

demands and receipts from January 1974 to March 1982. The DDF contained pro-

curement initiations from January 1974 to December 1981. Demands from the THF

contained a Document Identification Code (DIC) of AO, A4, D7 and DH and the

receipts were D4S. The procurement initiations from the DDF contained a DIC of

DDS. Additional item information for each NUN was obtained from the Selective

Item Generator (SIG) file of March 1982. The SIG file provides a snapshot of

the Master Data File (MDF).

The historical data used in this study required careful validation. Since

the data base encompassed an eight year period, there existed a possibility

that some of the NIINs on the demand transactions could have changed. If this

8



had occurred, any leadtime that had started before the NIN was changed would

not have a receipt to end the leadtime since the NIN was different. Also, the

demands for the old NIIN would only be recorded under the old NIIN's leadtime,

while the demands for the new NIN would be ignored. The Old NIIN File (ONF)

of March 1983 was used to update the NIINs on both the THF and DDF to prevent

inaccurate calculations of leadtime demand.

Before the leadtime demands were computed, a thorough examination was made

of the THF and DDF files to remove any records which were determined to be

invalid. Records which contained inaccurate or missing NIINs, procurement

dates, DICs or requisition quantities were not considered. Records were also

dropped if the item was not under SPCC management as of March 1982.

After the leadtime demands were computed, records containing demands of a

thousand (1,000) or more during a leadtime were validated. The inclusion of a

substantial number of large leadtime demands would tend to skew the

distribution to the right and inflate the mean. These leadtime demands were

potential outliers and might not be representative. A check of the leadtime

demands was made to ensure that only those records with demands that were

consistent with not only historical but also forecasted data were retained.

Based upon the validation results, approximately 85% of the records that

contained leadtime demands of 1,000 or more were dropped from further

consideration.

C. DISTRIBUTIONS CONSIDERED. The reorder level calculated in the UICP Levels

computation (DO1) assumes that an item's actual leadtime demand is described

by either the Poisson, Negative Binomial, or Normal distribution. The logical

start for an evaluation of the probability distributions used to describe

leadtime demand would begin with the three distributions currently implemented.

9



Previous studies dealing with probability distribuitons used to describe

leadtime demand were a valuable source when selecting additional distributions

for this study. Reference 2 of APPENDIX A examined the current distributions

along with the following four alternate distributions: Logistic, LaPlace,

Gamma and Uniform. Both references 2 and 3 of APPENDIX A noted that a

significant number of leadtimes have zero demands but only reference 3 of APPEN-

DIX A attempted to address this particular phenomenon. Reference 3 of APPENDIX

A found that a compound distribution using a Bernoulli distribution to describe

the zero demands and another distribution (e.g., Lognormal or Exponential) to

describe demands that are not zero could be used to model leadtime demand.

Reference (4) of APPENDIX A recommended the Gamma distribution to describe all

leadtime demand. The unique feature of the Gamma distribution was the variety

of shapes it could assume with only a change of parameters.

Therefore, the distributions considered in this study were: Poisson,

Normal, Negative Binomial, Logistic, LaPlace, Gamma, Weibull, Geometric,

Exponential, Bernoulli-Exponential and Bernoulli-Lognormal. Reference 2 of

APPENDIX A contains an illustration of the Logistic and LaPlace distributions

while the remaining distributions are illustrated in reference 5 of APPENDIX A.

D. EVALUATION PROCEDURES. The first step in deciding whether a particular

theoretical distribution represents the observed data is to decide whether the

general family; e.g., Exponential, Gamma, Normal or Poisson, of distributions

is appropriate, without worrying (yet) about the particular parameter values

for the family. Histograms were used to decide whether a particular

distribution family was appropriate. After the histograms were analyzed, the

values of the parameters for the various distributions were specified using

maximum likelihood estimators (MLEs). After the distribution forms were

10



analyzed and the parameters were estimated, the "fitted" distributions were

examined to see if they were in agreement with the observed data using the

chi-square goodness-of-fit test. In addition, a relative comparison of the

right hand tail of the various distributions was performed using the measure

of mean squared error (MSE).

1. Histograms. Histograms are used to hypothesize what family of

distributions the observed data comes from. A histogram is a graphical

estimate of the plot of the density function corresponding to the distribution

of the observed data. Density functions tend to have recognizable shapes.

Therefore, a graphical estimate of a density function should provide a good

clue to the distributions that might be tried as a model for the data. -

To make a histogram, the range of values covered by the observed data is

broken up into k disjoint intervals (b0, bI), (b1, b2), ... , (bk-l, bk). All

the intervals should be the same width, which might necessitate throwing out a

few extremely large or small observations to avoid getting an unwieldly

looking histogram plot. For j - 1, 2, ..., k, let qj be the proportion of the

observations that are in the jth interval (bJ 1. ba). Finally, the function

h(x) is defined as:

{ 0 if x < b o

h(x) q ij if bJ_1 S x <

0 if bk < x

which is plotted as a function of x.

Histograms are applicable to any distribution and provide an easily

interpreted visual synopsis of the data. Furthermore, it is relatively easy to

11



"eyeball" a graph in reference to possible density functions.

2. MLE. After a family of distributions has been hypothesized, the

value(s) of its parameter(s) must be specified in order to determine completely

the distribution which models the observed data. MLEs were used whenever

possible to determine the parameters in this study. The basis for MLEs is most

easily understood in the discrete case. Suppose that a discrete distribution

has been hypothesized for the observed data which has one unknown parameter e.

Let pe(x) denote the probability mass function for this distribution. Let X1 ,

X2 ..., X be the actual observation of the observed data. The likelihoodn

function L() is defined as follows:

L(e) - pe(Xl) Pe(X2)...Pe(X n)

L(O), which is just the joint probability mass function since the data are

assumed to be independent, gives the probability (likelihood) of obtaining the

observed data if 6 is the value of the unknown parameter. Then, the MLE of the

unknown value of 6, which we denote by 6, is defined to be the value of 6

which maximizes L(e); that is, L(9) > L(e) for all possible value of 6. Thus,

"best explains" the data that are observed. MLEs for continuous distributions

are defined analogously to the discrete case.

3. Chi-Square Test. After a distribution form for the observed data was

hypothesized and its parameters estimated, the "fitted" distributions must be

examined to see if it is in agreement with the observed data X1, X2 , ... , Xn.

The question really being asked is this: Is it plausible to have obtained the

observed data by sampling from the fitted distribution? If F is the

distribution function of the fitted distribution, this question can be

12
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addressed by a hypothesis test with a null hypothesis.

H0: The X s are independent identically distributed random variables

with distribution function F.

This is a goodness-of-fit test since it tests how well the fitted distribution

"fits" the observed data. A chi-square goodness-of-fit test may be thought of

as a more formal comparison of a histogram with the fitted density function.

To compute the chi-square test statistic, first divide the entire range of

the fitted distribution into k adjacent intervals [a0, al), (a1. a2 ), ... ,

[aki1, a.K) where it could be that a0 - -, or ak- + , or both. Then we

tally

N number of Xis in the jth interval [aJ_1 a )

k
for j - 1, 2, ..., k. (Note that E Nj - n.) Next, the expected proportion

j=i

pj of the Xis that would fall in the Jth interval if sampling from the fitted

distribution was performed is computed. In the continuous case,

pj j  ?(x) dx

where f is the density function of the fitted distribution. For discrete data

PJ - (i:aj_ <x j

J1 xi a

13



where p is the mass function of the fitted distribution. Finally, the test

statistic is:

k (N - np)X2  Z np

Since npj is the expected number of the n xis that would fall in the jth

interval if H. were true, X2 is expected to be small if the fit is good.

Therefore, H0 is rejected if X2 is too large. To determine if X2 is too large,

it is compared with the critical point X2  for the chi-square distribution

with v degrees of freedom where v - k-i and y - p {Y._x 2  }. (A chi-squarevily

critical point table is available in reference 6 of APPENDIX A.).

The most troublesome aspect of carrying out a chi-square test is choosing the

intervals. A common recommendation is to choose the intervals so that the

values of npj are not too small; a widely used rule of thumb (employed in this

study) is to select np > 5 for all J. The reason for this recommendation is

that the agreement between the true distribution of X2 (for fixed, finite n)

and its asymptotic (as n w) chi-square distribution (used to obtain the

critical value for a test) is better if the values of npj are not too small.

This contributes to the validity of the test.

4. MSE. The measure of MSE was also used to determine how well the theo-

retical distributions "fit" the observed data. The chi-square test is a

hypothesis test which evaluates the goodness-of-fit for a particular distribu-

tion over the entire range of the distribution. The MSE measure was used to

14



make a relative comparison of the distributions for the right hand tail. The

right hand tail of the leadtime demand distribution is critical in determining

the reorder point for an item in the UICP.

The MSE was calculated using the following procedure: Given a percentile

"p", the reverse cumulative probability function for each distribution was used

to calculate a value (x) such that the probability that a leadtime demand is

less than or equal to x equaled "p". The calculated values of x were then

used to determine the percentage, p, of the observed leadtime demand which were

less than or equal to x. Since the hypothesis is that the observed leadtime

demands come from a particular distribution, the expected value of should

equal p. The right hand tail of each distribution was evaluated by using

every fifth percentile starting with the 50th percentile and ending with the

95th percentile. The mean squared error was computed over the 10

percentiles as follows:

10HSE ,1 £ Pi - Pi ) 2

i=l

where

i - 1 represents 50% i - 6 represents 75%

i - 2 represents 55% 1 - 7 represents 80%

i - 3 represents 60% i - 8 represents 85%

i - 4 represents 65% i - 9 represents 90%

i - 5 represents 70% i - 10 represents 95%

15
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The following example will illustrate the MSE calculation. Assume that the

exponential distribution has been hypothesized as the leadtime demand

distribution for the group of MARK I items which have an average leadtime

demand equal to 8.11 and are distributed as displayed in APPENDIX B. The

reverse cumulative probability function for the exponential distribution is:

x - B * LN(1-p)

where

B is the mean

p is the percentile

For the group of MARK I items, the percentile p and the computed xs are shown

in columns one and two of TABLE I, respectively. Using the distribution dis-

played in APPENDIX B, the third column, p, is calculated. Column four is

calculated using the values in columns one (p) and three (^) to yield the

square error values. The square error values are summed (1920.50) and divided

by 10 to calculate the mean square error value of 192.05.

TABLE I

EXAMPLE CALCULATION FOR MARK I ITEMS

p x SQUARE ERROR

50 5 74.73 611.57
55 6 76.62 467.42
60 7 78.37 337.46
65 8 80.17 230.13
70 9 81.54 133.17
75 11 84.22 85.01
80 13 86.34 40.20
85 15 87.90 8.41
90 18 89.60 .16

95 24 92.36 6.97

16
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III. FINDINGS

II

The Findings are divided into the following sections: Leadtime Demand

Statistics, Histogram Results, Chi-Square Goodness-Of-Fit Tests and Mean Square

5 Error Results. As discussed in the Technical Approach, since there are not

enough leadtime demand observations for each item, the items were divided into

homogeneous groups with groups being determined based on one of six criteria. An

pi

j examination of the data revealed that dividing the data by MARK, Leadtime

Demand Forecast and Requisition Forecast provided the most homogeneous

groupings and the results are displayed using these three criteria. Each group-

ing was partitioned into five categories with each category containing

approximately 20% of the data.

A. LEADTIME DEMAND STATISTICS. TABLE II displays the following seven

statistics computed for the leadtime demand data for each grouping: the

number of NoNs, the percentage of the total NNs, the number of leadtime

demand observations, the percentage of the total observations, the mean value

of the leadtime demand observations, the variance of the leadtime demand

observations and the percent of leadtimes with zero demand. The mean,

variance and percent of leadtimes with zero demand are statistics required,

depending on the probability distribution, for calculating MLEs. The other

four statistics are displayed for general information.

Two general observations about the leadtime demand data can be made based

on these statistics. Consistent with other studies, a significant (45%)

number of leadtimes have no demand and the large variances indicate that the

data encompass a wide range of values.

17

varinceand ercnt o ledt~es wth ero emad ae sttisics equred



TABLE II

LEADTIME DEMAND STATISTICS

% OF % OF % OF

# NIN TOTAL # OBS TOTAL MEAN VARIANCE OBS-O

TOTAL 45.701 100 83,704 100 59.17 4,630.53 45

MARK
0 23,664 52 36,316 43 3.44 760.08 75
1 3,869 8 6,227 8 8.11 913.67 58
2 1,211 3 1,947 2 51.73 16,153.18 34
3 9,485 21 19,148 23 10.27 401.12 26
4 7,472 16 20,066 24 223.25 37,455.60 6

LTDMD
x - 0 15,752 34 23,654 28 5.13 2,109.96 77
0 < x 5 2 10,436 23 16,669 20 2.51 157.22 68
2 < x 1 10 7,840 17 14,875 18 9.14 751.69 36
10 < x -.. 50 6,688 15 14,817 18 26.22 2,047.81 15
x > 50 4,985 11 13,689 16 311.55 17,490.64 5

RQN FORECAST
x - 0 13,991 31 20,936 25 5.68 2,368.59 75
0 < x < .25 12,339 27 19,473 23 4.39 816.46 75
.25 < x 1 1 8,621 19 15,631 19 14.46 2,848.34 36
1 < x -el 3.5 6,559 14 14,428 17 41.23 30,075.66 10
x > 3.5 4,191 9 13,236 16 296.73 6,649.38 2

B. HISTOGRAM RESULTS. The histograms presented in FIGURES V through XVI

are based on all the leadtime demand observations and when the observations are

divided into MARK categories. FIGURE V is a graph of the number of leadtime

demand observations for 0, 1, 2, ..., 25 demands per leadtime. The X axis is

the number of demands observed during a leadtime while the Y axis is the number

of leadtimes containing these demands. For example, there are 37,731 observa-

tions of zero demand during a leadtime. FIGUILE VI is the same graph as FIGURE V

except the zero observations were removed. Two grapbs of virtually the same

data (FIGURES V and VI) are shown to illustrate the impact that the zero lead-

18
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time demand observation has on the shape of the data. Looking at FIGURE V, a

distribution resembling the data is hard to define, while FIGURE VI indicates

that the data may be exponentially distributed. The remaining FIGURES follow

the same pattern of two graphs for each MARK grouping. The first graph

contains the zero leadtime demand observations while the second does not.

Similar histograms for the Leadtime Demand Forecast and Requisition Forecast

groupings are contained in APPENDIX C. Based on the histograms, the following

six distributions were selected for chi-square testing: Exponential,

Bernoulli-Exponential, Negative Binomial, Poisson, Geometric and Gamma.

19
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C. CHI-SQUARE GOODNESS-OF-FIT TESTS. The distributions selected for

chi-square goodness-of-fit testing are: Exponential, Bernoulli-Exponential,

Negative Binomial, Poisson, Geometric and Gamma. The chi-square (X')

goodness-of-fit test is a formal comparison of a histogram with the fitted

density function. The density functions for the distributions given above are

computed and the (X2) test is performed as described in the Technical Approach.

TABLE III presents the chi-square test statistics for each grouping of the

six distributions being tested. Each distribution contains three columns:

degrees of freedom, critical value and computed )e value. The degrees of

freedom were determined, as described in the Technical Approach, by combining

the expected value of the cells so that each cell would contain at least five

observations. When there are 50 data cells, the degrees of freedom

are 50-1 or 49, but if several cells had to be combined, then the degrees of

freedom are less, for example, with 39 data cells the degrees of frredom are

39-1 or 38. The critical values were obtained from reference 6 of APPENDIX A.

The critical value is used to test the hypothesis that the observed leadtime

demand data can be described by the distribution being tested. The hypothesis

is rejected if the test statistic is larger than the critical value. As shown

in TABLE III, none of the computed (X2) test statistic values are less than the

critical values, therefore, the hypothesis is rejected for all the

distributions tested.

The (X2) goodness-of-fit test is a hypothesis test which uses the full

range of the tested distribution to indicate whether the distribution can des-

cribe the observed data. The next step is to use a relative test, based on

a MSE measure, to determine the distribution that best fits the data in the

right hand tail of the distribution.
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D. MEAN SQUARE ERROR RESULTS. For the findings presented previously, the

groupings of MARK, Leadtime Demand Forecast and Requisition Forecast were

divided into five categories with each category containing approximately 20Z

of the data. The initial analysis qf MSE also focused on the same five

categories. However, reviewing the resulting statistics (TABLE II, the

histograms anO the initial MSE results) led us to conclude that the categories

could be conso.,i-ated from five to three without affecting the MSE results.

Therefore, for the MSE results shown below, each grouping was consolidated

into a low, medium and high demand range. For the MARK grouping the

categories were MARK 0 (low demand), MARKs I and III (medium) and MARKs II

and IV (high demand). For the Leadtime Demand Forecast grouping, the

categories were leadtime demand forecast less than or equal to 2, greater than

2 but less than or equal to 50, and greater than 50. For the Requisition

Forecast grouping, the categories were requisition forecast less than or equal

to .25, greater than .25 but less than or equal to 3.5, and greater than 3.5.

As discussed in the Technical Approach, the MSE was calculated for the

right hand tail of the distribution by using every 5th percentile starting at

the 50th percentile and ending at the 95th percentile. The results of these

MSE calculations are displayed in TABLE IV. APPENDIX D contains the actual

percentages (j) of observed leadtime demand falling in each interval defined by

the tested distribution as 50th percentile, 55th percentile, etc. The Normal

distribution was included in the MSE analysis since all of the hypothesized

distributions failed the chi-square test and it is a distribution currently

being used in the reorder level computations. The Gamma distribution was not

included in the MSE analysis because there is no closed form for the Gamma.
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The smallest MSE value represents the best fit. The Bernoulli-Exponential

distribution provides the best fit in the right hand tail for every group of

items except for items with a leadtime demand forecast greater than 50.

TABLE IV

MEAN SQUARE ERROR STATISTICS

EXP BEXP NEGBIN POISSON GEOMETRIC NORMAL

MARK
0 410.52 152.74 173.85 442.69 448.67 681.97
I&III 48.43 5.38 93.46 151.50 74.03 274.70
II&IV 303.78 287.20 313.83 * 295.04 434.74

LTDMD
0 j Y < 2 404.76 130.51 167.09 479.95 449.24 297.30
2 < Y Z 50 70.90 38.61 153.49 160.05 74.48 699.62
Y > 50 193.47 312.50 379.58 * 317.13 407.25

RQN FCST
0 .j Y S .25 466.07 157.18 175.43 503.51 474.07 699.62
.25 < Y < 3.5 210.71 179.61 1096.31 294.55 222.97 548.46
Y > 3.5 357.71 356.93 411.01 * 358.27 419.56

*Means are too large for Poisson distribution to handle.

IV. SUMMARY AND CONCLUSIONS

In this report, 11 theoretical probability distributions were tested to

determine which distribution best describes the demand during leadtime for IH

Cog material. The UICP Levels computation program currently assumes that an

item's leadtime demand is described by either the Poisson, Negative Binomial or

Normal distributions. In addition to these three distributions, the

Exponential, Gamma, Geometric, Logistic, LaPlace, Weibull, Bernoulli-Lognormal

and Bernoulli-Exponential distributions were tested. The selection of the most

3
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appropriate probability distribution is vital to the calculation of safety

level. Using a distribution to calculate safety level which does not fit the

leadtime demand pattern will result in an inefficient allocation of funds.

Previous attempts to fit leadtime demand to .theoretical probability

distributions were restricted to using quarterly demand observations. In this

study, the Due-In Due-Out File and the Transaction History File were used to

determine actual leadtime demands for each item. The actual leadtime demands

were used to construct histograms to hypothesize what general family of

distributions the data comes from; for example, Exponential, Poisson, Normal.

After a family of distributions was hypothesized, the value of its parameters

were specified using maximum likelihood estimators where possible. The chi-

square goodness-of-fit hypothesis test was used to examine whether the

hypothesized distributions were in agreement with the observed data. Since the

chi-square test measures the fit over the whole distribution, a mean square

error measure was used to determine which distribution has the best fit in the

right hand tail. The right hand tail is the most important part of the

distribution since that is the part of the distribution used to determine

safety level.

Ideally, a probability distribution would be fit for each item's leadtime

demand observations. However, there were not enough leadtime demand observa-

tions for each item. Therefore, the items were divided into homogeneous groups.

Groups were determined based on one of the following six criteria: MARK,

Forecasted Leadtime Demand, Requisition Forecast, Unit Price, Value of Annual

Demand or Leadtime.
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None of the theoretical distributions passed the chi-square goodness-of-fit

test. However, the Bernoulli-Exponential distribution had the best right hand

tail fit.

V. RECOMMENDATIONS

It is recommended that UICP use the Bernoulli-Exponential distribution to

model leadtime demand.
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APPENDIX B: DISTRIBUTION OF LEADTIME DEMANDS FOR MARK I ITEMS

Leadtime Demand Number of Observations Cumulative Percent of Total Observations

0 3,608 57.94
1 256 62.05
2 273 66.43
3 167 69.11
4 175 71.92
5 175 74.73
6 118 76.62
7 109 78.37
8 112 80.17
9 85 81.54

10 96 83.08
11 71 84.22
12 74 85.41
13 58 86.34
14 54 87.21
15 43 87.90
16 40 88.54
17 34 89.09
18 32 89.60
19 32 90.11
20 45 90.83
21 22 91.18
22 21 91.52
23 31 92.02
24 21 92.36
25 28 92.81
26 19 93.12
27 15 93.36
28 13 93.57
29 17 93.84
30 14 94.06
31 12 94.25
32 18 94.54
33 5 94.62
34 18 94.91
35 10 95.07
36 11 95.25
37 5 95.33
38 6 95.43
39 2 95.46
40 11 95.64
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APPENDIX C: HISTOGRAMS

The histograms presented here reflect the data from FIGURES IV through
XVI stratified by leadtime demand forecast and requisition forecast vice HARK.

Histograms for Leadtime Demand Forecast Groupings:

Histograms for items with 0 < Leadtime Demand
Forecast < 2 including zero observations C-2

Histograms for items with 0 < Leadtime Demand
Forecast < 2 excluding zero observations C-3

Histograms for items with 2 < Leadtime Demand
Forecast < 50 including zero observations C-4

Histograms for items with 2 < Leadtime Demand
Forecast < 50 excluding zero observations C-5

Histograms for items with Leadtime Demand Forecast > 50
including zero observations C-6

Histograms for items with Leadtime Demand Forecast > 50
excluding zero observations C-7

Histograms for Requisition Forecast Groupings

Histograms for items with 0 < Requisition
Forecast < .25 including zero observations C-8

Histograms for items with 0 < Requisition
Forecast < .25 excluding zero observations C-9

Histograms for items with .25 < Requisition
Forecast < 3.5 including zero observations C-10

Histograms for items with .25 < Requisition
Forecast < 3.5 excluding zero observations C-I1

Histograms for items with Requisition Forecast > 3.5
including zero observations C-12

Histograms for items with Requisition Forecast > 3.5
excluding zero observations C-13
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APPENDIX D: PERCENTAGE "p" RESULTS

In calculating the Mean Square Error (MSE) measure, the reverse cumulative

probability function for each distribution is used to calculate a value "x"

such that the probability that a leadtime demand is less than or equal to "x"

equals "p", a given percentile. The calculated values of "x" are then used to

determine the percentage, p, of the observed leadtime demand which are less

than or equal to "x". For the 1H data used in this study, APPENDIX D contains

the percentage (j) of the observed leatime demands for the right hand tail

percentile (p). The data was grouped based on MARK, Leadtime Demand Forecast

and Requisition Forecast. Itz the table, EXP - Exponential, BEXP Bernoulli- -

Exponential and NEGBIN - Negative Binomial.
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